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Abstract We define a new percolation model by generalising the FK representation of the
Ising model, and show that on the triangular lattice and at high temperatures, the critical
point in the new model corresponds to the Ising model. Since the new model can be viewed
as Bernoulli percolation on a random graph, our result makes an explicit connection be-
tween Ising percolation and critical Bernoulli percolation, and gives a new justification of
the conjecture that the high temperature Ising model on the triangular lattice is in the same
universality class as Bernoulli percolation.

Keywords Ising model - Random-cluster measures - Dependent percolation - DaC
models - Sharp phase transition - Duality - p. =1/2

1 Motivation, Background and Synopsis

If one considers the percolation properties of spin clusters, the high temperature (8 < f.)
Ising model on the triangular lattice T with no external field shows critical behaviour in the
sense that the mean spin cluster size is divergent (see, e.g., [3]) and the probability that two
spins are in the same spin cluster has a power law decay (see [17]). The relevant universal-
ity class is conjectured to be that of two-dimensional Bernoulli (independent) percolation.
This conjecture includes convergence of certain interfaces to SLE¢ in the scaling limit, and
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appears in several places; see, e.g., [3, 23, 31, 32]. A renormalisation group analysis of the
percolation properties of the Ising model on T, supporting the conjecture, can be found, for
instance, in [27] and in Sect. 3 of [29].

In this paper we give a different justification of the above conjecture as follows. The
Ising model at inverse temperature 8 and no external field can be obtained by first drawing a
Fortuin-Kasteleyn (FK) random-cluster bond configuration with ¢ = 2 and density of open
edges p =1 — e¢#, and then assigning spin +1 or —1 to each vertex in such a way that
(1) all the vertices in the same FK bond cluster get the same spin and (2) +1 and —1 have
equal probability. We generalise this procedure by assigning spin +1 with probability r and
—1 with probability 1 — r, with r € [0, 1], while keeping condition (1). For fixed 8, we
shall view the resulting model as a (dependent) spin percolation model with parameter r,
where the only role of the FK model is to introduce dependence between the different spins.
We show that, on the triangular lattice and for 8 < B, this model has a percolation phase
transition at » = 1/2, corresponding to the Ising model.

The model defined above can also be viewed as Bernoulli site percolation on a random
graph whose vertices correspond to the FK clusters, and with an edge between two vertices
if the corresponding FK clusters are adjacent in T. Therefore, our main result shows that
the high temperature Ising model on T actually is critical Bernoulli percolation on a random
graph. This interpretation supports the above conjecture and provides a new perspective on
the convergence of interfaces to SLEg in the scaling limit. As a by-product, we find that for
almost every realisation of the above random graph, the percolation critical value is 1/2.

It is interesting to compare our result to a result of Higuchi, who has extensively studied
the percolation properties of the two-dimensional Ising model (see [18-22]). If one considers
the Ising model on the square lattice (which we simply denote by Z?) at inverse temperature
B with an external field %, then there exists a critical value A.(8) such that for all & > h.(8),
there is an infinite cluster of +1 spins, whereas there is no such infinite cluster for 7 <
h.(B). Similarly, one can define 2} () as the critical value for percolation of 41 spins in the
matching lattice of Z? which is obtained by adding diagonal edges inside the faces of Z2.
Higuchi showed in [22] that for all subcritical 8, the duality relation h.(8) + hl(8) =0
holds. (Note that since it is easier to percolate on the matching lattice than on Z?, it is not
surprising that 27 (f) is negative.) His proof can be applied to the triangular lattice where,
due to the fact that the matching lattice of T is T itself, it gives h.(8) = 0 for all 8 < B..
Thus again the Ising model on T with no external field corresponds to the critical point of
a one-parameter family of models (in this case, the Ising model with an external magnetic
field).

Both our result and Higuchi’s are meaningful for the conjecture at the beginning of this
section in that they relate it to a more general one, namely that all two-dimensional perco-
lation models with “short range” (including exponentially decaying) correlations between
sites or bonds belong to the same universality class as Bernoulli percolation (see, e.g., [12]).
In particular, it is believed that all such models have the same scaling limit at the critical
point. Although this conjecture is widely believed, a general proof seems out of reach at the
moment. However, such a strong form of universality has indeed been proved for some spe-
cific models of correlated percolation (see [5, 8—11]). For the Ising model with an external
field, exponential decay of correlations between sites for all 8 < 8. and & € R was proved
in Theorem 2 in [21], whereas for our model, it immediately follows from the exponential
tail decay of the size of FK clusters for 8 < ..

Note, however, that our result is quite different in spirit from Higuchi’s. Indeed, a key
feature of our model is that the bond clusters are not affected by a change in r, which
enables us to view the model as Bernoulli percolation on a random lattice. Such a picture
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does not hold for the one-parameter family obtained by changing the external field /4, since
a change in % also affects the FK clusters. In the random lattice interpretation, changing h
changes the lattice itself and not just the densities of the two spins. Therefore, our result
provides the first direct link between high temperature Ising percolation on T and critical
Bernoulli percolation.

The proofs of the two results are rather different too. They both follow the structure of
Russo’s formulation [30] of Kesten’s proof of p. = 1/2 for independent bond percolation
on Z2, but in both cases, sophisticated methods are required to deal with issues of depen-
dence. Higuchi’s proof makes heavy use of the Markovianness of the Ising model for all
values of &, but in our model, this property holds only at » = 1/2, and fails for all other val-
ues of r (see [2]). Therefore we instead utilise the fact that at » = 1/2 our model coincides
with the Ising model, so that we can use a lemma by Higuchi, together with new domination
lemmas (presented in Sect. 4) which enable us to get results for other values of r. This ap-
proach relies heavily on the fact that a change in r does not affect the underlying FK clusters
that give the correlation structure.

In addition to our main result, we prove uniqueness of the infinite +1 cluster for r > 1/2,
sharpness of the percolation phase transition (by showing exponential decay of the cluster
size distribution for r < 1/2), and continuity of the percolation function for all r € [0, 1].

It is a natural and interesting question whether the measure on the spins in our model
with parameters §, r and the Ising Gibbs measure with parameters g, h are stochastically
ordered (say, for appropriate values of » > 1/2 and h > 0). A positive answer might provide
a different proof of our main result. We (and other people) have thought about this question
but were so far unable to give any answer.

We note that van den Berg [34] has recently obtained a general result with an entirely
different proof that includes Higuchi’s above mentioned result as a special case. However,
neither his result nor its proof seem to be sufficient to obtain the results in this paper. Finally,
let us mention that percolation questions in a class of models similar to the one studied here
are discussed in the recent paper [13].

2 Main Results

We work on the triangular lattice T with vertex set V1 and edge set Et, and denote the unique
Ising Gibbs measure on T at inverse temperature 8 < . and zero external field by 4.

The random-cluster measures on edge configurations 7 € {0, 1}T (with the usual o-
field generated by cylinder events) are indexed by two parameters satisfying 0 < p <1 and
q > 0 (see [16] for the definition and some background). We call an edge e € &t open if
n(e) =1, and closed otherwise. The maximal connected components of the graph obtained
by removing all the closed edges from T are called FK clusters. For fixed g, there is a
percolation phase transition at some 0 < p.(g) < 1. If p < p.(q), with probability one all
FK clusters are finite, moreover, there is a unique random-cluster measure which we denote
by v, 4.

When g =2, which we will always assume from now on unless otherwise stated, one can
generate an Ising spin configuration o € {41, —1}¥T distributed according to ug, B < B,
by drawing an edge configuration according to v, , with p =1 — e# and assigning spin +1
or —1 to each vertex of T in such a way that (1) all the vertices in the same FK cluster get the
same spin and (2) +1 and —1 have equal probability. Since p.(2) = 1—e~%, 8 < B, implies
P < pc(2), sothat v, » is well-defined, and the FK clusters are all finite with probability one.

We generalise the above procedure by assigning spin +1 with probability r and —1
with probability 1 — r, with 7 € [0, 1], while keeping condition (1), and denote by P, the
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corresponding measure. For fixed B, this generates a dependent (spin) percolation model
with parameter r. Clearly, the spin marginal of Pg i/, coincides with pg. Note also that the
spin marginal of Py ;,» (equivalently, o) is a product measure and corresponds to critical
site percolation on T. As soon as § > 0, however, the spins are correlated. Nonetheless, the
exponential tail decay of the FK cluster size distribution when 8 < B, (see [16]) immediately
implies the exponential decay of correlations in the measure Pg ..

We call a maximal connected subset V of Vr such that all vertices in V have the same spin
a spin cluster. If the spins in V are all +1 (respectively, —1), we call V a (4)-cluster (resp.,
a (—)-cluster). Our aim is to study the percolation properties of spin clusters. We denote by
©(B,r) the Py ,.-probability that a given vertex of the triangular lattice is contained in an
infinite (4)-cluster, and define r.(8) = sup{r : @ (B, r) = 0}. It follows from Proposition 1.8
of [3] that for all 8 < 8., we have r.(8) > 1/2. The main result of this paper is the following
theorem.

Theorem 1 Forall B < B, r.(B) =1/2.

Note that, for fixed 8, r = 1/2 is the “self-dual point” of our model (see e.g. [33] for
the meaning and use of self-duality). Thus, Theorem 1 implies that the critical point of the
model coincides with its self-dual point. This is in accordance with a very natural principle
which is believed to be valid in great generality, but which has been verified only in a handful
of cases, including bond percolation on the square lattice [25], site percolation (see [26]) and
the Divide and Colour (DaC) model [3] on the triangular lattice, and Voronoi percolation [6].
The same principle should apply to other interesting models, such as the random-cluster
model (see [16]), other DaC models (see [3], Conjecture 1.7) and “confetti percolation” (see
Problem 5 in [4]).

We point out that, contrary to the model on T treated in this paper, if one considers the
analogous model on the square lattice with a subcritical 8, the critical value of r is strictly
greater than 1/2. This follows by standard methods from the exponential tail decay of the
size of Ising spin clusters on Z? at high temperatures [22, 34].

Theorem 1 concerns the joint measure P, but as anticipated, it has implications for
the critical value of Bernoulli percolation on the realisations of the random graphs obtained
from the FK clusters as explained in Sect. 1. Let E™ be the event that there exists an infinite
(+)-cluster somewhere in T. By the ergodicity of Pg , for B < 8. (which follows from the
ergodicity of v, for all p < p.(2), see [16]), we have that Pg ,(E™) is 1 forall r > 1/2 and
0 for all < 1/2. Now, for a bond configuration 5 € {0, 1}°T, let G, denote the realisation of
the random graph corresponding to 1 as defined in Sect. 1. Let ®"" denote the probability
that in Bernoulli percolation on G,, with density r of +1 spins there is an infinite (4-)-cluster,
and define r.(n) = sup{r : ®™" = 0}. Since Pg,(E™) = f O"dv,,(n) with p =1 — e P,
the above observation implies that for v, ,-almost every bond configuration 7, the integrand
is O for all r < 1/2 and 1 for all r > 1/2. Therefore, we have the following corollary of
Theorem 1.

Corollary 1 For all B < B, we have, with p=1— e, that
Vp.2({77 : rc(n) = 1/2}) =1
Combining Theorem 1 with results in [3] (see the end of Sect. 5 below), we next obtain

the percolation phase diagram in the whole high temperature regime (8 < f.), which is qual-
itatively the same as for Bernoulli (independent) site percolation on T (which corresponds
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to the special case f = 0 of our model). Due to the +/— symmetry of the model, we focus
without loss of generality on the behaviour of (4)-clusters. By the size of a cluster we mean
the number of vertices in the cluster.

Theorem 2 For all B < ., there is a sharp phase transition at r.(8) = 1/2 in the following
sense.

— Ifr < 1/2, the distribution of the size of the (+)-cluster of the origin has an exponentially
decaying tail.

= Ifr=1/2,©(B, 1/2) =0 and the mean size of the (+)-cluster of the origin is infinite.

— Ifr > 1/2, there exists a.s. a unique infinite (+)-cluster.

Moreover, for each 8 < B., © (B, r) is a continuous function of r € [0, 1].

A brief outline of the paper is given as follows. In Sect. 3, we introduce some more
definitions and notation, and we collect results which are either known or can be proved by
standard methods, including a result by Higuchi [21] about the Ising model. We shall use
them later, together with the standard Edwards-Sokal coupling [14] and results described in
Sect. 4, which contains some technical lemmas and an overview of the proof of Theorem 1.
In Sect. 5, we prove Theorem 1 and sketch the proof of Theorem 2.

3 Preliminaries
3.1 Notation and Definitions

In order to define a concrete coordinate system in the triangular lattice T, we embed T
in R? as in Fig. 1, so that its set of vertices Vr consists of the intersections of the lines
y=—+3x++3kand y = ?6 for k, £ € 7, and denote the elements of Vp by (k, £). We
call two vertices in Vr adjacent if their Euclidean distance is 1, and define the edge set Er
by & ={(v, w) : v and w are adjacent}.

The state space of our configurations is denoted by £2 = 2p x £2¢, where 2p = {0, 1}°T
is the set of random-cluster realisations, and £2¢ = {—1, +1}¥T corresponds to the spin

Fig. 1 Portion of the triangular
lattice T. The heavy segments are
the sides of the parallelogram
52’3 = [0, 2] X [0, 3]

0,3) (2,3)

\VAVAVAVAY,
VAVAVAVAV
AVAVAVAVA

(0,0) (2,0)
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configurations. The probability measure Pg , is the measure (on the usual o-algebra on £2)
obtained by the procedure described in Sect. 2; we denote the expectation with respect to
Py with Eg .

We introduce the set £2 C £2 as the set of configurations such that vertices in the same
FK cluster have the same spin, and we equip 2 with a relation “>" (which corresponds to a
partial order on §2¢, hence the notation) as follows. For w; = (11, 01), w2 = (12, 02) € 2 we
say that w; > w; if o1(x) > 0,(x) holds for every x € T. Note that w; > w, depends on the
spins only, and not on the edges. Henceforth all the configurations are implicitly assumed
to be in §2. We call an event A C £2 increasing if w € A and o’ > w implies @' € A. Aisa
decreasing event if A€ is increasing.

We call a sequence (xo, X1, ..., x,) of vertices in T a (self-avoiding) path if for all i €
{0, 1,...,n— 1}, x; and x;4, are adjacent, and for all 0 <i < j <n, x; # x;. A horizontal
crossing of a parallelogram R = [a, b] X [c,d], with a, b, c,d € 7Z, is a path xq, X1, ..., X,
such that xg € {a} x [c, d], x, € {b} X [c,d] and for all i, x; € R. A vertical crossing of the
same parallelogram is a path xg, x1, ..., x,, such that xy € [a, b] x {d}, x,, € [a, D] X {c} and
for all i, x; € R.

In a configuration (n,0) € 2. a (+4)-path is a path xg, x1, ..., x, such that for all i €
{0,1,...,n}, o(x;) = +1. Horizontal (+)-crossings and vertical (4)-crossings are defined
analogously. The definitions of (—)-path, horizontal (—)-crossing, vertical (—)-crossing are
obtained by replacing +1 with —1.

Let S, denote the parallelogram [0, n] x [0, m], with n, m € N. Denote by anm the
event that there is a vertical (4)-crossing in S,, ,,; let an ., be the corresponding event with a
horizontal (+4)-crossing. The analogous events with (—)-crossings are denoted by V" and
H_ ., respectively.

Let d denote the graph distance on T. We define the distance between two sets V and
W by d(V, W) = {min(d(v, w)) : v € V,w € W}. Let B(v,n) denote the disc of radius n
with center at vertex v in the metric d, i.e., B(v,n) = {w : d(v, w) < n}. For a vertex set
A C Vr, we denote by dA the internal vertex boundary of A, that is, we define 0A = {v €
A :3w € Vr \ A such that d(v, w) = 1}. For a vertex v € Vr, let Cf* be the FK cluster
of v, i.e., the set of vertices that can be reached from v through edges that are open in the
underlying random-cluster measure with parameters p = 1 — e~ and g = 2. Let us define
the dependence range of a vertex v by D(v) = max{n € {0, 1, ...} : CUFK NdB(v,n) # 0B}

We call an edge set E = {ey, €3, . .., ex} a barrier if removing ey, e,, . .., ¢; (but not their
end-vertices) separates the graph T into two or more disjoint connected subgraphs. A barrier
E corresponds to one or more dual circuits (obtained by drawing a dual edge perpendicular
to e; through e;’s center for each ¢; € E) and its definition is motivated by Lemma 1. Note
that exactly one of the resulting subgraphs is infinite, which we call the exterior of E, and
denote by ext(E). We call the union of the finite subgraphs the interior of E, and denote it
by int(E). With an abuse of notation, we shall write int(E) and ext(E) also for the vertex
sets of int(E) and ext(E) whenever it does not cause confusion. E = {ej, es,...,¢;} is a
closed barrier in a configuration (n,0) € 2 if E is a barrier and n(e;) = 0 holds for all
i €{0,1,...,k}. For a vertex set A C Vr, let AA denote the edge boundary of A, that is,
AA={(x,y)eér:x€ A,y eVr\ A}. Note that for 8 < ., the edge boundary of any FK
cluster is a.s. a closed barrier.

3.2 Preliminary Results
To make the paper self-contained, we collect here the tools needed to prove Theorem 1. The

first theorem in this subsection follows from results in [1], and is stated explicitly e.g. in
[16].
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Theorem 3 If p < p.(2), there exists ¥ (p) > 0 such that for all n, we have

Vp2(D(0) = n) <e™"V P

Another property of the random-cluster measures is that for e € & the conditional mea-
sure v, 4 (- | n(e) = 0) can be interpreted as a random-cluster measure with the same para-
meters p and ¢ on the graph obtained from T by deleting e (see [16]). This property implies
the following observation, which we state as a lemma for ease of reference.

Lemma 1 If B={ey,..., e} is a barrier, C(B) = ﬂle{n(ei) =0}, E, and E, are events
which depend only on states of edges and spins of vertices in int(B) and ext(B) respectively,
then conditioned on C(B), E| and E, are independent.

In the proof of Theorem 1, we will use a version of Russo’s formula for decreasing
events, hence we state the theorem in a slightly unusual form. The proof, as sketched in [3],
is standard. Let A be an event, and let w = (1, ') be a configuration in 2. Let C be an FK
cluster in . We call C pivotal for the pair (A, w) if 14 (w) # I4(@") where 1, is the indicator
function of A, ' = (1, 0'), and ¢’ agrees with o everywhere except that the spins of the
vertices in C are different.

Theorem 4 Let W be a set of vertices with |W| < 0o, and let A be a decreasing event that
depends only on the spins of vertices in W. Then we have that

d
d—r]P)ﬁ,r(A) =—Eg,,(n(A)),

where n(A) is the number of FK clusters which are pivotal for A.

The following result, like Lemma 2.10 in [3], is a finite size criterion for percolation.

Lemma 2 There exists a constant & > 0 with the following property. If 8, p =1 —e™? and
N e N satisfy

(N+1@N+ 1)11,,,2(D(0) > %) <e¢

and
]P’ﬁ,,(VAJ,fw) >1—e,
then ®(B,r) > 0.

As in [3], this lemma can be proved by a coupling argument with a 1-dependent bond
percolation model. Theorem 3 and Lemma 2 imply the following result.

Theorem 5 Forall B < B, if limsup,_, ., IP’;;,,(V,;}") =1 for some r, then ®(B,r) > 0.
3.3 Cut Points
We shall use (a slightly modified version of) a result of Higuchi from [21] (see also Propo-

sition 4.2 in [22]) about the Ising model. In order to state the theorem, we need a few defini-
tions. For positive integer values of k, let R, , be the collection of all horizontal crossings in
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Fig. 2 Bottom part of the
parallelogram S, ¢,,. The lines
inside S, ¢, parallel to the sides
of S, 6, represent the sides of the
parallelograms S/, .6 and S;l/,6n'
The curve from the left side of
Sn,6n 1O its right side represents a
horizontal crossing R € Ry, 45,
The portion of R contained
inside S, ¢ together with the
thick curve represents the

boundary of D(R)

Su.kn- For R € R, 4,, we denote the region in S, ¢, (note the different side length) under R by
L(R), the region in S, ¢, above R by A(R), the parallelogram [[n'/*|, n — [n'/4]] x [0, 6n]
by S ¢, and the parallelogram [2[n'/*|,n — 2|n'/*]] x [0, 6n] by S/ (,. (For a € R, we
denote by |a] the greatest integer smaller than or equal to a.) Also, let D(R) denote the
vertex set {v € Vr \ (A(R) N ,/116,1) :d(v, L(R) U R) < n'/*} (see Fig. 2). We call a vertex
X € R a cut point of R in S, ¢, if there exists a (+)-path in A(R) N S, from [0, n] x {6n}
to a neighbouring vertex of x (we use Higuchi’s language although our definition is slightly
different). For a fixed R € R, 4,, we denote by c¢(R) the “maximal number of cut points in
the middle part of R far enough from each other,” that is, the cardinality of a maximal subset
M(R) C RN S, ¢, for which the following properties hold:

— every v € M(R) is a cut point of R in S,, 6,
— for all v, v, € M(R), d(vy, v2) > /1.

We shall next compute a lower bound for (a conditional expectation of) c¢(R) by using the
aforementioned result by Higuchi.

Proposition 5.1 in [21] concerning the Ising model on Z? essentially states that if both
(+)-crossings and dual (—)-crossings in the long direction of 4n x n rectangles have prob-
ability bounded away from 0, then for an arbitrary fixed horizontal crossing R in the lowest
quarter of an n by n square S, irrespective of what the spins of vertices in and below R
are, the expected number of vertices v in R with a (4)-path from a neighbour of v to the
top of S is arbitrarily large for all n large enough. A careful reading of the proof of this
proposition shows that the same method works on the triangular lattice T. Moreover, we can
take the parallelogram S, ¢, instead of a square, consider a horizontal crossing R € R, 45,
condition on the spins of vertices in D(R) instead of L(R) U R, require that the (4)-path
from a neighbour of v € R to the top of S, ¢, be in A(R) N S,;/,sn’ and still conclude that,
under the assumption that (+) and (—)-crossings in S3, , have probabilities bounded away
from 0, the expected number of special vertices (which here are cut points of R in S, ,)
goes to infinity as n — oo. In fact, using Higuchi’s notation in [21], we see that since all
the cut points considered in the proof are found inside annuli A/]/.’ which are at distance at
least % -4/ from one another (where only integers j satisfying /n <2 -4/ are considered—
see (5.21) in [22]), all cut points considered are automatically at distance at least % -/n
from one another. Therefore, if Eg denotes the expected value w.r.t. 15, and Fy denotes the
o -algebra generated by {o (x) : x € V}, we have the following result.
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Proposition 1 Let 8 < B, and assume that there exists 6 > 0 such that

min{s (), ip(Hsy ) = 8 (n)
for every n > 1. Then we have

lim inf inf Eg (c¢(R)| E) =o0.

n—00 RERy 4n EEFp(R)

Due to the self-matching property of T and the +/— symmetry of the model, for any
n € N, we have

mp(H,) =1/2. (@)

It follows from this observation and the RSW-type results in [18] (which apply to T as well
as to the square lattice) that condition (1) in Proposition 1 is satisfied with a proper choice
of §. Furthermore, since » = 1/2 corresponds to the Ising model, for all 8 < ., we have

lim inf inf  Egi,(c(R)| E)=o00. 3)
R)

n—00 RERy 4n E€EF p(

4 Domination Lemmas
4.1 Strategy of the Proof of Theorem 1

In order to motivate the technical results in this section, we give an informal (and somewhat
imprecise) overview of proof of r.(8) < 1/2 for 8 < B.. The structure of our proof of this
fact is based on Russo’s formulation [30] of Kesten’s celebrated proof [25] of the analo-
gous statement for bond percolation Z>. The proof proceeds by contradiction, assuming that
ro(B) > 1/2 and showing that this implies the existence of some & > 0 such that, for all
r €[1/2,1/2 + €], the number of FK clusters which are pivotal for the event corresponding
to the presence of a (—)-crossing in a sufficiently large parallelogram Sy ¢y is very large
(in expectation). By Russo’s formula, the expected number of pivotal FK clusters equals the
derivative of the probability of the crossing event. This leads to a contradiction since the
probability of any event has to remain between 0 and 1, and so its derivative cannot be too
large on an interval.

We show in Sect. 5 that if we take 8 < B, and assume r.(8) > 1/2, then the probability
of a horizontal (—)-crossing in the lower half Sy 3y of the parallelogram Sy ¢y is bounded
away from 0, uniformly for every r € [1/2,r.(8)). We take r( in that range and consider
the lowest such crossing R and the union U of FK clusters of vertices in and below R,
which is surrounded by a closed barrier B. Since 8 < 8., the FK clusters “tend to be small.”
Therefore, with high probability, every edge of B is at most at distance N'/* from the set
of vertices in and below R. Assuming that this is the case, the internal vertex boundary
of int(B) contains exactly one horizontal crossing of Sy 45, which we call I's. Since the
vertices in Iz N S}(,,ﬁN (i.e., the middle part of I'p) are in FK clusters of vertices in the
lowest horizontal (—)-crossing R, if v € I'y N S]’(,,(,N is a cut point of I'p in Sy ey, then CfK
is pivotal for Hy ¢ . Therefore, from this point on, our goal is to find a large number of cut
points of I'g in Sy ey in I'p N Sy oy

In Sect. 3.3, we used Higuchi’s results and the Edwards-Sokal coupling to obtain (3),
which informally states that for 8 < B. and r = 1/2, for any horizontal crossing of a suffi-
ciently large parallelogram, regardless of the values of the spins of vertices in and below the
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crossing, the expected number of cut points of the crossing is arbitrarily large. We would like
to use this result to conclude that there are many cut points of I's in Sy ¢y in I3 N S;\,’,6N' We
couple the r = r( and the r = 1/2 case by taking the same random-cluster configuration in
ext(B) (which is allowed since B is a closed barrier), and assigning spins to the FK clusters
as follows. We take i.i.d. random variables (V (CTX) : v € ext(B)) with uniform distribution
on the interval [0, 1], and assign spin +1 to v if V(CUF XY is smaller than ry or 1/2, respec-
tively. Then, every vertex which is a cut point in the r = 1/2 case is a cut point in the r = ry
(> 1/2) case as well, since being a cut point requires the presence of (+)-paths only, and
every vertex in ext(B) whose spin is +1 at 1/2 has a +1 spin also at ry.

We now would like to use (3), but we cannot do that immediately because at this point of
the proof we have information on the FK clusters of vertices in and below R, and not only
on spin values, as required by (3). To circumvent this problem, we will use the presence of
the closed barrier B to show that having information on the FK clusters of vertices in and
below R does not create problems. Proving such a result requires a considerable amount of
work, to which the rest of the present section is dedicated.

The proof of r.(8) < 1/2 can be finished from here as follows. First of all, it follows
from Lemma 1 that turning the spin of every vertex in int(B) to —1 does not change the
expected number of cut points in I'z N Sy, ¢, . Then, Corollary 2 implies that this expected
number is bounded below by the expected number without conditioning on B being closed.
For the latter expected number, we can use (3) to conclude that the expected number of cut
points in I’z N Sy ;y becomes arbitrarily large as the size of the parallelogram increases,
leading to the desired contradiction, as discussed earlier.

4.2 A Barrier Around —1 Spins

Our goal in this section is to prove Corollary 2. We do this through three lemmas, using
ideas from [3] and [24]. We need a property of the random-cluster measure v, , on T from
[15] (see also [16]), namely that for all ¢ > 1, the so-called “FKG lattice condition” holds
for v, ,. We use the following version of it: for any £ C &1, e € &7\ E, and ¥/, ¢ € {0, 1}
with ¢ > ¢ (coordinate-wise), we have

Vpgme)=1[n=ConE)>v,,(ne)=1|n=y onkE). “

This property will play an important role in the following proofs. We state the following lem-
mas for the measure [Pg , but in fact all statements in this section hold for all DaC measures
obtained by replacing v, » in the construction of Pg . by v, , with g > 1.

Inequality (4) informally states that the more edges in a certain set E are open, the more
likely it is that other edges are open as well. The next lemma states that further conditioning
on the left hand side on the event I that the vertices of a certain set V all have the same spin
Kk leaves the inequality unchanged.

Let V = {vj,v,,..., v} C Vr be a set of vertices, k € {—1,+1} a spin value, £ =
{e1, ez, ..., e} C&Er aset of edges, s1,52,...,5 €{0,1} and gy, g2, ..., g¢ € {0, 1} states,
with g; > s; for all i. Consider the events [ = ﬂf;]{a(v[) =«}, Ay = ﬂf.:l{n(ej) =y},
Ay = ﬂﬁ,:l{n(ej) =g;} (thecase E =0, A, = A, = 2 is also allowed).

Lemma 3 Foralle € &7\ E, we have

Ppr(n(e) =11 A, 1) = Pg,(n(e) = 1] Ay). &)
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Proof Since
Pg, (n(e) =1, A, I)
Pﬁ,r(Aga I)

_PpUln@=1 4,
Ppr(I1Ap)

Pgr(n(e)=11Ag, 1) =

Pprne)=11A4p),

and Pg . (n(e) =1 A,) = Pg,(n(e) =11 Ay) by (4), we have that (5) follows from
P, (I n(e)=1,A,) =Pp (I | Ay). (6)
Since

Pp (I Ag) =P (I |n(e) =1, AP, (n(e) =1] A,)
+ P (I n(e) =0,A)Pg(n(e) =0 Ay,),

we see that (6) is equivalent to
P, (I n(e)=1,A4,)>Pg,(I|n(e) =0, Ap). @)

In order to show (7), we will first construct two coupled bond configurations, ¥y and v,
such that v, has distribution v, > (- [ n(e) =0, A,), ¥ has distribution v, > (- | n(e) =1, A,)
(both with p =1 —e~#), and ¥y < ¥,. Such a coupling can be obtained by setting ¥y (e;) =
Yi(e)) = gi» Yole) =0, ¥ (e) = 1, then determining the states of the remaining edges one
edge at a time in some deterministic order, using (4) at each step (for a precise way of doing
this, see e.g. the proof of Lemma 2 in [24]).

Now notice that given a bond configuration v, defining n (1) as the number of FK clus-
ters in ¥ which contain vertices of V, the probability of I is simply "™, where ¢ =r if

k=41and c=1—r if « = —1. Since n(Yy) > n(y¥) and 0 < ¢ < 1, this observation
concludes the proof of (7) and thereby the proof of Lemma 3. |
Now take E = {e, e, ..., e}, 51,5,...,8, As, A, as before Lemma 3, and let F =

{fi, fo, .-, fm} C Er be a set of edges such that F' N E = @, and define the event C(F) =
M~ {n(f;) = 0}. Then, as an easy consequence of (4), we have that for all ¢ > 1,e € &7\
(EUF),

Vpg(m(e) =11Ag) =vp4(ne) =11 Ay, C(F)).

The next lemma follows from this observation and Lemma 3.

Lemmad4 Forallee&r\ (EUF), we have
Pg, (n(e)=1]Ag, I) = Pg,(n(e) =1]A,, C(F)).

Note that this statement is still an intuitively clear consequence of (4), since the addi-
tional conditioning on / (i.e. that certain vertices all have spin «) on the left hand side of
(4) should intuitively increase the probability that other edges are open, whereas the addi-
tional conditioning on C(F) (i.e. having even more edges closed) on the other side should
intuitively decrease this probability.

We are now ready to state the main result in this section, which immediately implies the
desired Corollary 2. Recall the definition of Fy for V C Vr right before Proposition 1.

@ Springer



The High Temperature Ising Model on the Triangular Lattice 133

Lemma 5 Let V = {v, va, ..., 0} C Vr be a connected set of vertices, and take its edge
boundary B = AV ={f1, f>,..., fu} C Er (Which is a barrier). Consider the events I =
ﬂf;l{a(v,-) =—1}, C(B) = ﬂ]"?:l{n(fj) =0}, and let D € Fy be an increasing event.
Then we have

Pg(D|C(B)) =Pp, (D). ®)

Proof We prove (8) by constructing two coupled realisations (Y¢(p), oc()) and (Y, o7)
with distributions Pg (- | C(B)) and Pg (- | I) respectively, in such a way that if D occurs
in oy, it occurs in o¢(p) as well.

First, we construct the bond configurations ¥ ¢(p) and ¥; one edge at a time, using
Lemma 4 at each step, as follows. Fix a deterministic order of edges in &y starting with
edges incident on vy, vy, ..., U;. Take a collection (U (e) : e € &) of i.i.d. random variables
having uniform distribution on the interval [0, 1]. We start with a situation where ¥¢(p)(e)
and ¥, (e) are undetermined for every edge, and determine the states of edges by the fol-
lowing iteration. We take the first edge in the deterministic order, and denote it by e¢;. We
declare Yc(gy(er) =1 if and only if U(e;) < Pg,(n(e;) =1| C(B)), and ¥;(e;) =1 if and
only if U(e;) <Pg,(n(e;) =1]|1). Note that by Lemma 4, ¥¢(g)(e1) < ¥(er).

Let us assume that the states of ey, e,, ..., e; are determined and Y¥¢(p)(e;) < ¥ (e;) for
all i €{1,2,..., j}. The next edge e, is the next undetermined edge in our deterministic
order that shares a vertex with an edge which is open in ;. If no such edge exists, we simply
take the next undetermined edge.

Having chosen e;;;, we determine its state by defining V¢ (ej41) = 1 if and
only if U(ejs1) < By, (n(ejs1) = 1| C(B). N {n(e:) = Wew(en)) (otherwise we as-
sign Yewpy(ej+1) =0), and Y(ejr) =1 if and only if U(eji1) <Ps,(n(ejr1)=1]|1,

,Ld’l(ei) = VY;(e;)}) (otherwise v;(e;11) = 0). By the hypothesis V¢ (py(e;) < ¥;(e;)
foralli € {1,2,..., j} and Lemma 4, we have that ¥c(g)(€;+1) < ¥(ej41).

In this way, we obtain bond configurations V¢ gy with distribution P4 ,-(- | C(B)) and v;
with distribution Py ,- (- | I) such that y¢(z) < ¥;. Let us fix j* to be the index of the last edge
chosen by the iteration which is connected by a y;-open edge path to any of the vertices
Vi, Uy, ..., V. The first part of the iteration (i.e. before e« is chosen) “explores” the FK
clusters in ¥; of the vertices vy, v, ..., U, and when it ends, V is surrounded by a barrier
B, (which consists of edges from ey, e,, ..., e;+) which is closed in ;. Since ¥; > Yc(p),
B, is closed in ¥¢(p) as well. Using Lemma 1, we obtain

j*
Pg,, ('I(ej*+1) =1|C(B), m{ﬁ(ei) = ¢C(B)(€i)}>

i=1

j*
=Ps, (ﬂ(ej*+1) =111, ﬂ{ﬁ(ei) = Wl(ei)})

i=1

which implies ¥¢(g)(ej++1) = ¥;(ej+41). Using the same argument, it is easy to prove by
induction that the remaining part of the iteration yields ¥ ¢(g) = ¥ in ext(B;).

We now define the spin configuration o; by assigning 41 with probability r, —1 with
probability 1 — r independently to the v; FK clusters in ext(B;) (according to some de-
terministic order), and assigning o;(v) = —1 to each v € int(B,). This gives the correct
distribution since every vertex in int(B;) is in the same FK cluster as one of the vertices
U1, U, ..., V. We finish the coupling by defining o¢(p) in the following way. We assign

@ Springer



134 A. Blint et al.

+1 with probability r, —1 with probability 1 — r independently to the ¥¢(p) FK clus-
ters in int(B;) (according to some deterministic order), and define o¢(p)(v) = o7 (v) for
all v € ext(B,) (since V¢ () = ¥y in ext(B,), we get the right distribution). Let us assume
that D occurs in o;. It is important to notice that all vertices that have spin +1 in o, are
in ext(B,), where o¢(p) = oy, so they have spin +1 also in o¢(p). Since D is an increasing
event, this observation shows that D occurs in o¢(py as well. This concludes the proof of
Lemma 5. ]

Corollary 2 If V = {vy, va,...,u} C Vr is a connected set of vertices, and B = AV =
{f1, f2,---, fm} C Er is its edge boundary, then considering the events I = ﬂf:l {o(v;) =
-1}, C(B) = ﬂ';':l {n(f;) =0}, and an increasing event D € Fey(p), we have that

Pg, (D C(B), 1) =Pp,(D|1). (C))

Proof Since B is a barrier, I € Finp), and D € Fe(p), we have by Lemma 1 that Pg (D |
C(B),I) =P ,(D | C(B)). Therefore, Lemma 5 gives the statement. O

5 Proofs of Theorems 1 and 2

By Theorem 5, r.(8) < 1/2 (and thereby Theorem 1) follows from showing that
limsup,_, o ]P’,(V;Bn) =1 when r =1/2 + ¢ for all ¢ > 0. We shall prove that the assump-
tion of the contrary implies the presence of too many pivotal FK clusters for a certain event,
leading to a contradiction. (For a more detailed summary of the proof, see Sect. 4.1.)

Theorem 6 For any B < . and & > 0, we have that

limsup P 104 (V,55,) = 1.

n—0o0
Proof Let us assume that there exist 8 < ., ¢ > 0 such that

limsupPg 124 (V,5,) < 1, (10)

n—00

and fix such a 8 and e. We shall derive a contradiction from (10). Due to the self-matching
property of T, (10) implies that there exists y > 0 such that for all n large enough,

Pp1jote(H,5,) > V- Y

By (11), monotonicity, (3), and elementary properties of the exponential function, it is pos-
sible to choose an integer N large enough so that for n > N, the following inequalities hold:

Ps,(H,5,) >y Vrell/2,1/2+¢], 12)
2
inf inf Elg’l/z(c(R) | E) > —, (13)
ReRy an EEFp(R) ey
(4 D) (6n + e v < % (14)
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where ¥ (p) is the same as in Theorem 3. Fix such an N and an arbitrary ro € [1/2, 1/2+¢€].
We shall show that, denoting the number of FK clusters which are pivotal for Hy ¢y by
n(Hy ¢y), we have

_ 1
Eﬂvfo(n(HNﬁN)) > g (15)
For R € Ry 3n, we define

B(R) = {B C & : B is abarrier; 3(L(R) U R) C int(B);
Ve € B,d(e,d(L(R) UR)) < N'/*;

dint(B) contains exactly one horizontal crossing of Sy 4y}

(The motivation for this definition is that since 8 < 8., FK clusters are small, hence with
high probability, the “tightest” closed barrier surrounding L(R) U R is contained in B(R).)
For B € B(R), we denote the horizontal crossing of Sy 4y contained in 9 int(B) by I's. We
also define /(R) to be the event that R is the lowest horizontal (—)-crossing in Sy ¢y. For
R € Ry 3n, B € B(R), we denote the union of FK clusters |, ¢, zyur Co " by U, the event
MueLrur{P®) < N'*} by 1(R), and consider the event

O(R, B)={l(R)}N{B =AU} N {t(R)}.
Then we obtain

Epr(Hyo)) = Y Y Ean(i(Hy o) | Q(R. B)Ps, (Q(R. B))

ReRN 3N BEB(R)

> > > Epn(cs) | Q(R, B)Pgs, (Q(R, B)) (16)

ReRN 3N BEB(R)

where the second inequality follows from a pointwise comparison: conditioned on Q(R, B),
we have n(Hy ¢y) > c¢(I'p), due to the following reasons. Using the notation from the de-
finition of ¢(Ig) (see Sect. 3.3), conditioned on Q(R, B), the FK cluster of every vertex v
in M(I'g) is pivotal for Hy ¢, since v is a cut point of Iz in Sy ey, and R is the lowest
horizontal (—)-crossing in S ~v.6n- It is important to note that every v € M (I'p) is indeed in
the FK cluster of a vertex in R (i.e., of a vertex in the lowest horizontal (—)-crossing), not
of a vertex in L(R) (there is no other possibility due to { B = AUg}). This is the case since
M(I'p) C I'p N Sy gy—since none of the vertices below R has a dependence range larger
than N'/4, none of the FK clusters of the vertices in L(R) is large enough to go around
R and reach the middle part Sy, ¢, of the parallelogram Sy ¢y. The last step necessary for
proving the conditional pointwise comparison is to notice that for vy, v, € M(I'g), v; F# vy,
we have CUFIK =+ C,‘;K since d(vy, v2) > +/N and, conditioned on Q(R, B), none of the ver-
tices in L(R) U R has a dependence range greater than N''/4. Therefore, different vertices in
M (I') belong to different pivotal FK clusters.

The next step is to give a lower bound for the expectation via a comparison with the
case with parameter » = 1/2. We shall first work with probabilities, then we will sum them
up to get back the expectation. Let us denote (N + 1)(6/N + 1) (i.e. the number of ver-
tices in Sy ¢y) by K. For a barrier B, we define the events C(B) = (),.z{n(e) = 0} and
W(B) = ﬂveim(B){o(v) = —1}. Since for every R € Ry 3y, B € B(R),i €{l,..., K}, we
have {c(I'p) > i} € Facrpnsy, .., C Fexd)» {L(R) = R} € Frryur C Fins)> W(B) € Fins)»

N,6N
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and the event {B = AUg} N {t(R)} depends on the state of edges in int(B) and B only, it
follows from a repeated use of Lemma 1 that for all R, B, and i, we have that

Ppry(c(I'g) =i | Q(R, B)) =Pp (c(I'p) =i | C(B))
=Ppr(c(I'p) =i [ C(B), W(B)). a7

Coupling the measures with » = ry and r = 1/2 by taking the same bond configurations in
ext(B) (see Sect. 4.1), we see that

Pgry(c(I's) =i | C(B), W(B)) = Pg1/2(c(I'p) = i | C(B), W(B)). (18)

Since for all i, {c(I's) > i} € Fexup) 1S an increasing event, we can use Corollary 2 to con-
clude that

Pp1/2(c(I'p) =1 | C(B), W(B)) = Pg 1/2(c(I'p) =i | W(B)). (19)

Summing up for i € {1,2,..., K}, using (17), (18), (19) and then (13), we obtain that for
every R € Rysn, B € B(R), as.,

K K
Eg.r(c(I'p) | Q(R, B)) = Zpﬂ,ro(c(rl}) >i| Q(R,B)) = ZIF’ﬂ,l/z(C(FB) >i|W(B))

i=1 i=1

2
=Ep12(c(I'p) | W(B)) > o (20)

Finally we need to note that for a crossing R € Ry 3y, if t (R) occurs, then AUg € B(R).
Therefore,

> D> Pen(QR.B))

ReRN 3N BEB(R)

D Ppy((R) NE(R)) = Py (Hy 5y) —Pﬁ,,()( U 2w > N”“)

ReRN 3N VERy 6n

— (N4 1)(6N + 1)v,,(D(©0) > N'/*) =y — (N + 1)(6N + e V"V > /2,

where we used the translation invariance of v, ,, (12), Theorem 3, and (14). Using (16),
(20), and this computation, we obtain that

2
Eg.ro(n(Hy gn)) > Z Z Pﬁ n(Q(R, B)) = = ey T

ReRN 3N BEB(R)

~<

as desired.
Since (15) can be proved for all r € [1/2, 1/2 + €] with the same method, we obtain by
Theorem 4 that

d
sup  ——Pg,(Hysy) <-—
rell/2,1/2+¢] Ar
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which leads to a contradiction since it yields

_ _ d _
]P)ﬁ,l/2+5 (HN,SN) = ]P)ﬁ,l/Z(HNsN) +eé sup _]Pﬂ,r(HNgN)
rell/2,1/24¢] Ar

<P/3,1/2(H1;'3N)—1. |:|

Sketch of the proof of Theorem 2. The exponential tail of the distribution of the size of
the (+4)-cluster of the origin for r < 1/2 can be proved similarly to Theorem 2 in [6]. The
statement concerning the critical case r = 1/2 has been proved in Proposition 1.8 of [3].
We mention that one can obtain a polynomial lower bound for the tail distribution of the
(+4)-cluster of the origin at r = 1/2 by using elementary duality arguments only, see [17,
p. 15]. The ergodicity of Pg, for B < B. guarantees the presence of an infinite (+)-cluster
when r > 1/2.

The uniqueness of the infinite (+)-cluster follows from a result in [7], which implies
that if a probability measure p on {—1, +1}T is translation invariant and satisfies the finite
energy condition [28], then p-a.s. there exists at most one infinite cluster of +1’s. If 8 < oo
and 0 < r < 1, then the spin marginal of [P, clearly satisfies both properties.

The statement about the continuity of @ (8, r) inr for < . follows from ® (8, 1/2) =0
and the uniqueness of the infinite (4)-cluster by standard methods (see [35]), in the same
way as the analogous result in [3].

Remark 1 In all the proofs in this paper, the FKG inequality and RSW-type arguments are
used for Pg . only at the critical point 7 = 1/2, never away from it. This way of proving
classical percolation results can be useful in the case of models, like the present one, where
the (conjectured) critical point has special properties and is better understood compared to
other values of the parameter.
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